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Spatial periodic synchronization of chaos in coupled ring and linear arrays of chaotic systems
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Dynamic behaviors of coupled ring and linear arrays of unidirectionally coupled Lorenz oscillators are
studied numerically. It is found that the chaotic rotating waves generated from the ring propagate with spatial
periodic synchronization along the linear array, that is to say, two chaotic oscillators in the linear array are
synchronized if the number of oscillators~spatial distance! between them is a multiple of oscillator number in
the ring. Numerically it is shown that the stabilities of the synchronized states are enhanced by chaos, and
degraded when the oscillators are far from the ring.
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Chaos synchronization of coupled nonlinear syste
@1–4# is ubiquitous in nature and science and recently
attracted great interest in chaos study@5–7#. Several types of
synchronization, such as generalized synchronization@8#,
phase synchronization@9#, lag synchronization@10#, and so
on, are shown to exist in different geometries of oscillat
coupling. But until now much study on coupled chaotic o
cillators has focused mainly on the instability of the unifor
synchronous state, in which either all oscillators synchron
to the drive or all of them do not synchronize in the lo
time region @3,4,13–15#. Ring geometries have been us
extensively in physiological and biochemical modeling stu
ies @11,12#. Ring and linear arrays are two main couplin
models in the study of chaos synchronization@4,13–20#
since their potential applications in communication@21# and
neural process@16#. In this Rapid Communication we coupl
a ring and a linear array and numerically found that the ch
of contiguous units of the linear array do not synchroni
but that of noncontiguous ones synchronize with spatial
riod.

A scheme of our coupling geometry is shown in Fig. 1,
which linear array is driven by the circular array of unidire
tionally coupled Lorenz oscillators. The arrow indicates
oscillator drives the one closely behind it, that is to s
chaotic waves unidirectionally propagate in the arrays.
oscillators both in the ring and in the linear array are iden
cal and connected unidirectionally through variablex with
the same coupling strengths. With these considerations
have the following evolution equations for the system:

ẋ j5s~yj2xj !,

ẏ j5R@a x̄ j1~12a!xj #2yj2xjzj ,

żj5xjyj2bzj , ~1!

( j 51, . . . ,N;18, . . . ,N8) wherex̄ j5xj 21 for j Þ1, the cou-
pling strengtha allows one to control the stability of th
connection, and 0<a<1. The boundary conditions ente
through x̄ j , which takes the valuex̄185xN8 for circular ar-
rays, while for linear arrays it isx̄15xN8 in our system. The
oscillators are labeled byk8518,28,38, . . . ,N8 in the ring,
andl 51,2,3, . . . ,N in the linear array. The size of the ring
m5N8.
1063-651X/2002/65~5!/055202~3!/$20.00 65 0552
s
s

s
-

e

-

s
,
-

n
,
ll
-

e

In the coupling geometry the ring can be treated as
external drive and the linear array as the response system
the numerical studies we focus mainly on the special ca
wherem53, andN→`. The parameters,s, R, andb which
have the usual meaning, are chosen in the chaotic regio
the isolated Lorenz oscillator, in our case,s520, b52.5,
andR>28. Takinga51 andR528 we find that there is a
uniform chaotic synchronization in the ring@17#. The ring
imposes its behavior to the linear array, and the whole lin
array attains the same asymptotic synchronous chaotic
havior as in the ring. For larger values ofR up to R535,
three different chaotic rotating waves~CRWs! with a 2p/3
phase difference of neighboring oscillators appear in the r
@17,19#, see Fig. 2. The inset illustrates the fine detail
which the three CRWs are similar, while the positions a
heights of the chaotic wave peaks are different. Any th
neighboring oscillators in the linear array respond to the r
and exhibit the same behavior as that in the ring in the lo
time region. By careful study we found that the noncontig
ous oscillatorsk8 and l 01nm become synchronized with
spatial periodm (m53 in our special case! in the linear
array, herek8518,28,38; l 051,2,3; n50,1,2, . . . and k
5 l 0, for example, oscillators 18,1,4,7,10,13, . . . ,113n are
all synchronized. Numerical calculations show that stabi
of the synchronization decreases with increasingn. As an
example, we analyze the synchronizations of the oscilla
18, and 1,4,7,10,13, . . . ,113n by using the method of Ref
@2# and writing the linearized evolution equations f
(dx1218 , dx4218 , dx7218 , dx10218 , dx13218 , . . . ,
dx(113n)218)5(x12x18 , x42x18 , x72x18 , x102x18 , x13
2x18 , . . . ,x113n2x18); here xj5(xj ,yj ,zj ). Two oscilla-
tors, such asx1 and x18 will synchronize only ifdx→0 as
t→` @2#. Figure 3 exhibits the numerical results (n
50, . . . ,4), which shows that the unsynchronized time r

FIG. 1. Geometry of the coupled ring and linear arrays of L
renz systems, explained in the text.
©2002 The American Physical Society02-1
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gions 0→tu increase with increasingn, that is, the stability
of synchronizations becomes more and more weaker d
the linear array. The fitted result can be expressed atu
5exp@f(a1,a2,a3,l)#, wherea1 , a2, anda3 are dependent on
the parameters of Eq.~1!. In our case@see Fig. 5~a!#,
f (a1 ,a2 ,a3 ,l)5a1l1a2na3; here a1;2.0, a2;10.5,a3
;0.01, and l is the Lyapunov exponent~see below!.
We have calculated the transverse Lyapunov expon
for (d x1218 , d x4218 , d x7218 , d x10218 , d x13218 , . . . ,
dx(113n)218) and obtained the fitted formulal (113n)2185
2c/(ng1d)(c;201.7,d;40.0,g;0.80). The numerica
and fitted results are shown in Fig. 4, whose numerical
curacy is 1022. Thel (113n)218’s increase with increasingn

FIG. 2. Diagram of variablexj 8 vs timet in the coupled ring and
linear arrays calculated according Eq.~1!, showing the chaotic ro-
tating waves, and the parameters ares520, b52.5, R535, and
a51. The inset illustrates the fine detail of the chaotic rotat
waves.

FIG. 3. Representation ofdx vs time t in the linear array.~a!
dx1218 vs t; ~b! dx4218 vs t; ~c! dx7218 vs t; ~d! dx10218 vs t; ~e!
dx13218 vs t. Parameters are the same as those in Fig. 2.
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and approach 0 asn→`, then the system becomes unsy
chronized completely. The scaling laws abouttu and
l (113n)218 are obtained under certain parameters andm53.
We should stress that the parameters used intu and
l (113n)218 are different for differents, b, R, a, and~or! m.
There is no definite relation between them.

We have extensively studied different types of waves t
are generated by changing the parameters of Eq.~1!, and
found that not only CRWs but also quasiperiodic waves a
periodic rotating waves~PRWs! can propagate down the lin
ear array with similar results. But synchronization itself
structurally stable in chaotic driving and CRWs can prop
gate longer than PRWs down the linear array. As an exam
the PRWs take a longer timetu to synchronization than do
CRWs ~see Fig. 5! for a51, R540, s520, and b52.5.

FIG. 4. The diagram of the transverse Lyapunov expone
l (113n)218 vs n in the system. Parameters are the same as thos
Fig. 2.

FIG. 5. The relations of time to synchronizationtu with the
number of spatial periodn, ~a! for CRWs, the parameters are th
same as those in Fig. 2~b! for PRWs, the parameter same as in~a!
exceptR540.
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While the PRWs also can only synchronize in the first f
spatial periods, that is,n is small, for example,n<4 for a
51, R528, s510, andb58/3. Further study shows tha
spatial periodic synchronization can be observed for arbitr
size of the ring (m>3), and we have tested this phenomen
up to the sizem560. For a larger ring due to Hopf bifurca
tion many modes are excited, so other different types
waves appear in the ring. In each of the cases,m different
chaotic waves~not always CRWs, there are intermittent ch
otic waves, modulated waves, etc.! with a 2p/m phase dif-
ference of neighboring oscillators generated in the r
propagate with spatial periodm in the linear array. However
when m.3, the waves generated in the ring are differe
from that in the ring ofm53 for the same parameter
s,b,R,a. While the forms of the functionstu(n) and
l ( l 01nm)2k8(n) for CRWs are similar to the results give
before, the difference is only the parameters in the functio

Since the coupling affects the spatiotemporal structu
we also carefully studied the evolution of the system with
change of the coupling strengtha. The effect ofa on the
ring is similar to that ofR on the single Lorenz oscillator, fo
example, takingR540 and decreasinga from 1, the system
(m53) may exhibit a transition from PRWs (0.90&a&1)
to CRWs (0.80&a&0.90), then to synchronized chaot
state (0.20&a&0.80). Whena50.75, the global transien
chaotic rotating waves appear before they approach the
chronized chaotic behaviors as in the linear array@15#. If we
further decreaseR anda, we could observe metastable cha
@5# in the system. With decreasinga, the amplitude and fre-
ea

ev

ett

05520
ry
n

f

-

g

t

s.
e,
e

n-

quency of PRWs decrease, and finally they become cha
waves. The situations are different form.3, but there are no
special interesting cases related to the subject discussed
The numerical results illustrate that whena&0.10, the dy-
namical characteristics of individual Lorenz oscillato
dominate the system, and the spatial periodic synchron
tion of chaos disappears.

In conclusion, we have built up a coupled ring and line
array system, in which chaotic synchronization occurs w
spatial periodm in the linear array due to the response of t
linear array to the ring in which the chaotic rotating wav
are generated. The chaos synchronization is degraded w
the oscillators in the linear array are far from the ring. Th
result is correct for other waves. But only the chaotic rotat
wave is the most stable wave, that is, chaos can enhanc
propagation of the chaotic waves input to the linear array
the ring. In addition, the results shown in the present Ra
Communication can also be found in other coupled osci
tors, such as coupled Chua’s@23# and Rössler’s@24# systems.
Our results may have potential applications in neural p
cesses@16#, communications@21,22#, and information pro-
cessing systems@13#. How to design chaos synchronizin
systems and find their applications in science and techno
remains an interesting topic for future research. Another
teresting subject is whether there is the noise enhan
propagation@25# in our system.

This research was supported by the Foundation for U
versity Key Teacher by the Ministry of Education of Chin
~GG-0702-10286-1562!.
.

@1# H. Fujisaka and T. Yamada, Prog. Theor. Phys.69, 32 ~1983!.
@2# L.M. Pecora and T.L. Carroll, Phys. Rev. Lett.64, 821~1990!.
@3# L.M. Pecora and T.L. Carroll, Phys. Rev. A44, 2374~1991!.
@4# T.L. Carroll and L.M. Pecora, Physica D67, 126 ~1993!.
@5# Meng Zhanet al., Phys. Rev. Lett.86, 1510 ~2001!; in this

reference a generalized periodic splay state is found for w
coupling ast→`.

@6# E. Allaria et al., Phys. Rev. Lett.86, 791 ~2001!.
@7# T. Heil et al., Phys. Rev. Lett.86, 795 ~2001!.
@8# L. Kocarev and U. Parlitz, Phys. Rev. Lett.76, 1816~1996!.
@9# M.G. Rosenblum, A.S. Pikovsky, and J. Kurths, Phys. R

Lett. 76, 1804~1996!.
@10# M.G. Rosenblum, A. Pikovsky, and J. Kurths, Phys. Rev. L

78, 4193~1997!.
@11# A.M. Turing, Philos. Trans. R. Soc. London, Ser. B237, 37

~1952!.
@12# J.J. Collins and I. Stewart, Biol. Cybern.35, 95 ~1994!.
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