RAPID COMMUNICATIONS

Spatial periodic synchronization of chaos in coupled ring and linear arrays of chaotic systems
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Dynamic behaviors of coupled ring and linear arrays of unidirectionally coupled Lorenz oscillators are
studied numerically. It is found that the chaotic rotating waves generated from the ring propagate with spatial
periodic synchronization along the linear array, that is to say, two chaotic oscillators in the linear array are
synchronized if the number of oscillatoispatial distancebetween them is a multiple of oscillator number in
the ring. Numerically it is shown that the stabilities of the synchronized states are enhanced by chaos, and
degraded when the oscillators are far from the ring.
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Chaos synchronization of coupled nonlinear systems In the coupling geometry the ring can be treated as the
[1-4] is ubiquitous in nature and science and recently hagxternal drive and the linear array as the response system. In
attracted great interest in chaos stifly-7]. Several types of the numerical studies we focus mainly on the special case,
synchronization, such as generalized synchronizaf®lp ~ wherem=3, andN—c. The parametersr, R, andb which
phase synchronizatiof®], lag synchronizatio10], and so  have the usual meaning, are chosen in the chaotic region of
on, are shown to exist in different geometries of oscillatorsthe isolated Lorenz oscillator, in our cases 20, b=2.5,
coupling. But until now much study on coupled chaotic 0os-and R=28. Takinga=1 andR=28 we find that there is a
cillators has focused mainly on the instability of the uniform uniform chaotic synchronization in the rirfd7]. The ring
synchronous state, in which either all oscillators synchronizémposes its behavior to the linear array, and the whole linear
to the drive or all of them do not synchronize in the longarray attains the same asymptotic synchronous chaotic be-
time region[3,4,13-15. Ring geometries have been usedhavior as in the ring. For larger values Bfup to R=35,
extensively in physiological and biochemical modeling stud-three different chaotic rotating wavé€RWS with a 27/3
ies [11,12. Ring and linear arrays are two main coupling phase difference of neighboring oscillators appear in the ring
models in the study of chaos synchronizatiph13—-2(Q [17,19, see Fig. 2. The inset illustrates the fine detail in
since their potential applications in communicat[@1] and  which the three CRWs are similar, while the positions and
neural procesEl6]. In this Rapid Communication we couple heights of the chaotic wave peaks are different. Any three
aring and a linear array and numerically found that the chaoaeighboring oscillators in the linear array respond to the ring
of contiguous units of the linear array do not synchronize.and exhibit the same behavior as that in the ring in the long
but that of noncontiguous ones synchronize with spatial petime region. By careful study we found that the noncontigu-
riod. ous oscillatorsk’ and |o+nm become synchronized with

A scheme of our coupling geometry is shown in Fig. 1, inspatial periodm (m=3 in our special cagein the linear
which linear array is driven by the circular array of unidirec- array, herek’=1',2",3'; 1,=1,2,3; n=0,1,2... andk
tionally coupled Lorenz oscillators. The arrow indicates an=|, for example, oscillators "11,4,7,10,13. . .,1+3n are
oscillator drives the one closely behind it, that is to say.all synchronized. Numerical calculations show that stability
chaotic waves unidirectionally propagate in the arrays. Allof the synchronization decreases with increasngds an
oscillators both in the ring and in the linear array are identi-example, we analyze the synchronizations of the oscillators
cal and connected unidirectionally through variaRlevith 1’ and 1,4,7,10,13..,1+ 3n by using the method of Ref.
the same coupling strengths. With these considerations W] and writing the linearized evolution equations for

have the following evolution equations for the system: (6X1_1ry  OXg1r, X711, OXigo1ry OXiz_1rs «--s
, OX+3n)-17) = (Xe=X1r, Xg=Xgr, X7= X/, Xg0~ X1, X13
X;j=0o(y;—Xj), —X17, ... X143n—X17); herex;=(x;,y;,z). Two oscilla-

tors, such ax; andxy. will synchronize only if 5x—0 as
t—oo [2]. Figure 3 exhibits the numerical result: (
ij=ijj —bz, (1) =0, ...,4),which shows that the unsynchronized time re-

yjzR[a;j—l—(l—a)Xj]—yj—Xij ,

(i=1,...N;1', ... N') wherex;=x;_, for j#1, the cou-
pling strengtha allows one to control the stability of the
connection, and € a<1. The boundary conditions enter

through;j, which takes the valu§1,=x,\,, for circular ar-
rays, while for linear arrays it ig; =Xy in our system. The

oscillators are labeled bl'=1",2",3', ... N’ in the ring,
andl=1,2,3 ... Ninthe linear array. The size of the ringis  FIG. 1. Geometry of the coupled ring and linear arrays of Lo-
m=N". renz systems, explained in the text.
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FIG. 2. Diagram of variable;, vs timet in the coupled ring and
linear arrays calculated according E@), showing the chaotic ro-
tating waves, and the parameters are 20,b=2.5,R=35, and

Fig. 2.

a=1. The inset illustrates the fine detail of the chaotic rotating

waves.

the parameters of Eq(l). In our case[see Fig. %],
here a;~2.0,a,~10.5,a3
~0.01, and\ is the Lyapunov exponenfsee below.

f(aj,a,,az,\)=a;\ +a,n?s;

20

FIG. 4. The diagram of the transverse Lyapunov exponents
Na+3nm-1 VS Nin the system. Parameters are the same as those in

and approach 0 as—o, then the system becomes unsyn-
chronized completely. The scaling laws aboyt and
gions 0—t, increase with increasing, that is, the stability ;. 3, _;, are obtained under certain parameters @ard3.
of synchronizations becomes more and more weaker dowWe should stress that the parameters usedt,nand
the linear array. The fitted result can be expressed,as \(.3n) -1/ are different for differentr, b, R, «, and(or) m.
=exdf(a;,a,,a3,\)], wherea;, a,, anda; are dependent on There is no definite relation between them.

We have extensively studied different types of waves that
are generated by changing the parameters of (Eg.and
found that not only CRWs but also quasiperiodic waves and

We have calculated the transverse Lyapunov exponentgeriodic rotating wavesPRWs can propagate down the lin-
for  (6Xq_1/, OXq_qry OX7_17, 8X10-1/» OX13-1/, ...,  €ar array with similar results. But synchronization itself is
OX(1+3n)—1/) and obtained the fitted formul® gn) 1/ = structurally stable in chaotic driving and CRWSs can propa-
—c/(n”+d)(c~201.7,d~40.0,y~0.80). The numerical gate longer than PRWs down the linear array. As an example,
and fitted results are shown in Fig. 4, whose numerical acthe PRWs take a longer tintg to synchronization than do
curacy is 102 The\ ;. 3n-1/'S increase with increasing ~ CRWs (see Fig. § for a=1, R=40,0=20, andb=2.5.
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FIG. 3. Representation afx vs timet in the linear array(a)
SX1_1, Vst (D) OX4_q1: VST (C) SX7_1s VST, (d) SXq9_1s VST; (€)

OX13-1: Vst. Parameters are the same as those in Fig. 2.

FIG. 5. The relations of time to synchronizatiop with the

exceptR=40.
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number of spatial period, (a) for CRWs, the parameters are the
same as those in Fig(l® for PRWs, the parameter same aqah



RAPID COMMUNICATIONS

SPATIAL PERIODIC SYNCHRONIZATION OF CHAG . .. PHYSICAL REVIEW E 65 055202R)

While the PRWSs also can only synchronize in the first fewquency of PRWs decrease, and finally they become chaotic
spatial periods, that is) is small, for examplen<4 for «  waves. The situations are different foe>3, but there are no
=1,R=28,0=10, andb=8/3. Further study shows that special interesting cases related to the subject discussed here.
spatial periodic synchronization can be observed for arbitraryrhe numerical results illustrate that when=0.10, the dy-

size of the ring (h=3), and we have tested this phenomenonnamlca| characteristics of individual Lorenz oscillators
up to the sizen=60. For a larger ring due to Hopf bifurca- dominate the system, and the spatial periodic synchroniza-
tion many modes are excited, so other different types ofion of chaos disappears. _ _
waves appear in the ring. In each of the caseglifferent In conclusm_n, we have bu[lt up a coup_Ied_rmg and Ilne_ar
chaotic wavegnot always CRWs, there are intermittent cha-8/Tay System, in which chaotic synchronization occurs with
otic waves, modulated waves, étwith a 2=/m phase dif- spatial periodnin the linear array due to the response of the
ference of neighboring oscillators generated in the rindmear array to the ring in which the_cha_otlc_ rotating waves
propagate with spatial periad in the linear array. However, aré generated. The chaos synchronization is degraded when

when m>3, the waves generated in the ring are differentthe oscillators in the linear array are far from the ring. This
from that in the ring ofm=3 for the same parameters result is correct for other waves. But only the chaotic rotating

o,b,R,a. While the forms of the functiong,(n) and Wave is the most stable wave, that is, chaos can enhance the
1My 1 . u . . - .
)\(I0+nm)fk’(n) for CRWs are similar to the results given propagation of the chaotic waves input to the linear array by

. . . . the ring. In addition, the results shown in the present Rapid
before, the difference is only the parameters in the functionse, i nication can also be found in other coupled oscilla-
Since the coupling affects the spatiotemporal structure ;- ;

) : ; tors, such as coupled Chug®3] and Rasler’s[24] systems.
we also carefully studied the evolution of the system with th P ] [24] sy

. €our results may have potential applications in neural pro-
c_han_ge_of_ the coupling strength_. The effect Ofa_ on the cesseq16], communication§21,22, and information pro-
ring is similar to that oR on the single Lorenz oscillator, for cessing systemL3]. How to design chaos synchronizing
example, takindR=40 and decreasing from 1, the system i

. . e systems and find their applications in science and technology
(m=3) may exh|b|t<a transition from PRWs (08Qr=1)  omains an interesting topic for future research. Another in-
to CRWs (0.862=0.90), then to synchronized ch{;\ouc teresting subject is whether there is the noise enhanced
state (0.26 «=<0.80). Whena=0.75, the global transient Rropagatior[ZS] in our system.

chaotic rotating waves appear before they approach the sy
chronized chaotic behaviors as in the linear aftEg)]. If we This research was supported by the Foundation for Uni-
further decreasR anda, we could observe metastable chaosversity Key Teacher by the Ministry of Education of China
[5] in the system. With decreasing the amplitude and fre- (GG-0702-10286-1562
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